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Abstract

Hyperbolism of a given curve with respect to a point and a line is an interesting construct,
a special kind of geometric locus, not frequent in the literature. While networking between two
different kinds of mathematical software, we explore various cases, involving quartics, among
them the so-called Külp quartic and topologically equivalent curves, and also an example with a
sextic and a curve of degree 12. By a similar but different way, we derive a new construction of
a lemniscate of Gerono. First, parametric equations are derived for the curve, then we perform
implicitization Gröbner bases packages and using elimination. The polynomial equation which is
obtained enables to check irreducibility of the constructed curve.

1 Introduction

1.1 The needed dialog between two kinds of mathematical software
Prior to the development of Computer Algebra Systems (CAS) and Dynamic Geometry Software
(DGS), mechanical devices were used to draw specific curves [29]; spirographs were among the most
popular and enabled to draw epitrochoids and hypotrochoids1 and other related curves. Here, instead
of mechanical devices, we use software, both a DGS (GeoGebra, version 5.2.871.0-d, released on
December 10th, 2024) and a CAS (Maple 2024). The first one enables to construct and explore the
curves, their shape and topology, sometimes providing polynomial equations but not always. We use
then the CAS in order to perform algebraic computations and derive polynomial equations for the
curves under study. Afterwards it is possible to copy-paste the formulas to the DGS and to analyze
the curves with its dynamical features. This CAS-DGS collaboration provides a useful environment
for the exploration of new constructs, as in [15]. Such a dialog between the two kinds of software has
been used for example in [12, 9], and for years has been wished to be more automatic [25].

1See https://mathcurve.com/courbes2d.gb/epitrochoid/epitrochoid.shtml and https:
//mathcurve.com/courbes2d.gb/hypotrochoid/hypotrochoid.shtml.
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In this work, the curve are determined first by parametric equations. Implicitization is important,
as a polynomial presentation may provide information whether the curve is irreducible or not (see
[21], chap. 1). The algebraic part of the work is based on the theory of Gröbner bases and on
Elimination; see [7, 28]. We may refer also to [2], in particular for the non familiar reader who can
see how to work out elementary examples by running the algorithms ”by hand”. Note that Maple
has an implicitize routine in its package algcurves, based on [6]. Irreducibility is also checked with
automated methods; see Section 2.

Mathematical objects cannot be grasped with hands, and are approached using numerous registers
of representations [17]; the classical registers for plane curves are graphical, numerical and algebraic.
Parametric representations and implicit representations as two subregisters of the algebraic one. The
study is made rich and efficient by switching between registers, but switching from parametric to
implicit and from implicit to parametric are non trivial tasks; see [22, 27, 28, 7]. In some cases, the
switch is impossible.

Switching between different representations of plane curves is an important issue, with numerous
applications in computer aided design and other fields. In [30], Wang emphasizes the role in computer
aided geometric design and modeling. He develops ”an extremely simple method that converts the
rational parametric equations for any curve or surface into an implicit equation” (we recommend
also the vast bibliography there in the paper). He uses Gröbner bases, resultants, etc. In our work
here, we transform the obtained parametric equations into parametric rational presentations, then into
polynomial equations. We use Maple’s PolynomialIdeals package and elimination to derive implicit
equations. It is often easier to analyze the topology of a curve using an implicit presentation than a
parametric presentation. Anyway, both enable the study and classification of singular points.

1.2 Plane curves defined as geometric loci
Plane algebraic curves are a classical topic, to which numerous books have been devoted, such as [32].
Websites are devoted to curves (and surfaces) such as Mathcurve (http://mathcurve.com).
Full catalogues of curves of degree 2,3 and 4 exist, and partial catalogues for degree 6. Some of them
are constructed as geometric loci. The bifocal definition of ellipses and hyperbolas is generally the
first example met by students. Cassini ovals (also called spiric curves) and Cayley ovals are more
advanced examples. Recently, some octic curves (curves defined by polynomials of degree 8) have
been described as geometric loci in relation with a classical theorem of plane geometry, namely Thales
second theorem [13]. The present paper shows a bunch of curves, more or less classical, appearing as
geometric loci by construction of hyperbolisms.

Our concern is the construction and study of plane curves as hyperbolism of classical curves,
according to the definition in the Mathcurve website [20]:

Definition 1 The hyperbolism of a curve Γ0 with respect to a point O and a line (D) is the curve Γ,
locus of the point M defined as follows: given a point M0 on Γ0, the line (OM0) cuts (D) at P ; M is
the projection of P on the line parallel to (D) passing by M0.

Remark 2 Analytically, if the line (D) is given by the equation x = a, the transformation of Γ0 into
Γ can be written (x, y) →

(
x, a y

x

)
; it is quadratic, so an algebraic curve of degree n is transformed

into an algebraic curve of degree at most 2n. The 2nd coordinate a y
x

makes the connection with
hyperbolas, whence their name hyperbolism.
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By definition, hyperbolisms of curves are a subtopic of geometric loci, which are a classical topic,
from middle school to university. The last decades have seen numerous works devoted to automated
methods in Geometry, such as [1, 3, 4, 18] and [23], where loci are one of the main topics for which
automated methods have been developed, and implemented in GeoGebra-Discovery2. A large num-
ber of versions of automated commands exist, we use here only a few of them, mostly GeoGebra’s
Locus(<Point Creating Locus>,<Point>) and Locus(<Point Creating Locus>,<Point>). The
place holders are called respectively the Tracer and the Mover in the above mentioned papers. The
automated command provides a plot of the curve, sometimes also an implicit equation. For this it uses
numerical methods. In the companion package GeoGebra-Discovery, this has been supplemented by
symbolic algorithms yielding more precise answers. For the algebraic work, we switched to the Maple
software, especially for implicitization, but not only.

The notion of a hyperbolism has been presented to a small group of in-service mathematics teach-
ers, learning towards an advanced degree M.Ed. (Master of Education). These teachers had previous
knowledge including the perpendicular bisector of a segment, a circle, conics, etc. as geometric loci,
but almost neither CAS nor DGS literacy. The outcome of their work was double: the development of
new perspectives in geometry and acquisition of technological skills. The feedback was very positive,
and true curiosity at work.

2 First easy examples

2.1 Hyperbolism of a circle centered at the point O and the line is tangent to
the circle

We consider the circle C centered at the origin O with radius r. The line D has equation x = r and is
thus tangent to the circle C. A point M0 ∈ C is given by (x, y) = (r cos t, r sin t) where t ∈ [0, 2π].
The line OM0 has thus equation y = x tan t and intersects the line D at P (r, r tan t). It follows that
the point M has coordinates

(x, y) = (r cos t, r tan t) (1)

Equation (1) is a parametric presentation of the geometric locus that we are looking for. Figure
1 shows a screenshot of a GeoGebra session for this question. The requested curve has been ob-
tained using the LocusEquation(M,M0) command. It could have been obtained also with the
LocusEquation(<Point Creating Locus Line >,< Slider >), after entering directly the parametriza-
tion (1), but in this case the new construct is independent of what has been done previously. The plots
corresponding to the 2 last rows in the algebraic window overlap each other, therefore only one plot
is viewed. Nevertheless, they are considered by the software as 2 different objects.

In this session, the radius may be changed, but the equation of the geometric locus remains of the
same form. In Figure 1, r = 4 and the geometric locus has equation

x2y2 + 16x2 = 256, (2)
2A freely downloadable companion to GeoGebra, available from https://github.com/kovzol/

geogebra-discovery. We used the November 5th, 2024 version; a new version has been released on December
21st, 2024.
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Figure 1: Hyperbolism of a circle with respect to its center and a tangent

which is the equation of a Külp quartic3. A GeoGebra session4 may help to visualize the construct for
various values of the radius. Slightly different ways to construct the hyperbolism with the software
may be chosen, and for some of them an implicit equation is not obtained. The user has to modify
his protocol to have it ”more geometric” (v.i. Section 4). It happens that GeoGebra-Discovery dis-
plays a message telling that the construction involves steps which are not supported by the command
LocusEquation, which gives an indication that the construction has to be more geometric (e.g. not
dependent on a slider). In our applet, the tangent has not been constructed directly with its equa-
tion, as in Figure 1, but using the Tangent command of the software, which is important as part of a
geometric construct; see Figure 2.

In order to derive from Equation (1) a polynomial equation, we use the following substitution, as
in [12]:

∀t ∈ R, ∃u ∈ R such that

{
cos t = 1−u2

1+u2

sin t = 2u
1+u2

(3)

We apply the following Maple code:

xk := r*cos(t); yk := r*sin(t)/cos(t);
xkrat := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1), xk);
ykrat := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1),

subs(sin(t) = 2*u/(uˆ2 + 1), yk));
p1 := x*denom(xkrat) - numer(xkrat);
p2 := y*denom(ykrat) - numer(ykrat);
J := <p1, p2>;
JE := EliminationIdeal(J, {r, x, y});

3A curve studied in 1878 by Külp; see https://mathcurve.com/courbes2d/kulp/kulp.shtml
4https://www.geogebra.org/m/md4f8aaa
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Figure 2: Hyperbolism of a circle with respect to its center and a tangent - variable radius

The output is an ideal with a unique generator, providing the following equation (for any real r):

r2x2 + x2y2 − r4 = 0. (4)

Note the dependence of the coefficients in Equation (4) on the radius of the circle. Using Maple’s com-
mand evala(AFactor(...), we check that the left hand side in Equation (4) is an irreducible polynomial.
This means that the 2 components of the curve described by this equation cannot be distinguished by
algebraic means, i.e. they are not 2 distinct components of the curve (see [21], p.17-18).

2.2 Hyperbolism of an ellipse
We generalize slightly the situation of subsection 2.1 and consider now an ellipse C whose equation
is x2

a2
+ y2

b2
= 1, where a and b are positive parameters5. Here too, the point O is the origin. The line

D has equation x = a, i.e. is tangent to the ellipse C and parallel to the y−axis. A point M0 ∈ C is
given by (x, y) = (a cos t, b sin t) where t ∈ [0, 2π]. The line OM0 has thus equation y = x b

a
tan t

and intersects the line D at P (a, b tan t). It follows that the point M has coordinates

(x, y) = (a cos t, b tan t) (5)

Remark 3 The segment c in the upper left corner of Figure 3 comes instead of a slider for a parameter
which is involved in the implicit equation of the ellipse. This, in order to have the ellipse dependent on
a geometric construct. Actually, the ellipse itself could have been constructed as a geometric loci, but
in such a case GeoGebra’s command LocusEquation may provide a plot and an implicit equation,
but not the possibility to use the command Point on Object.

5GeoGebra applets are available at https://www.geogebra.org/m/eqywkwcw and https://www.
geogebra.org/m/tfnrwaqh
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Figure 3: Hyperbolism of an ellipse

We apply a Maple code similar to the code in the previous subsection6. The output provides an
equation for the hyperbolism of the ellipse:

b2x2 + x2y2 − a2b2 = 0. (6)

Using the same tool as in previous section, we show that the obtained curve is irreducible. Note that
it is not a Külp quartic (the coefficient of x2 is not the square of the free coefficient). The equations
are quite similar, but not identical. Figure 4 shows how a GeoGebra applet may help to understand
that, for various values of the axes of the ellipse, the obtained curves have the same topology. The
exploration leads to proving that two curves in this family are obtained from each other by an affinity
whose axis is the y−axis and the direction is perpendicular to it. Moreover, this may be an opportunity
to explore in class the similarities and the differences of these quartics, Külp quartic, and also the
Witch of Agnesi (which is a cubic).

Remark 4 Denote F (x, y) = b2x2 + x2y2 − a2b2. We have: Fx(x, y) = 2x(b2 + y) and Fy(x, y) =
2x2y. It is easy to show that the system of equations Fx = Fy = 0 has no solution (actually (0, 0)
solves the system, but the origin does not belongs to the curve). Therefore the curve has no singular
point.

Remark 5 Assuming that at inflexion points the curvature is equal to 0, it is possible to look for
candidates using the following code:

with(Student[VectorCalculus]);
Curvature(<a*cos(t), b*tan(t), t>, t);
simplify(%);
infl := solve(% = 0, t);
allvalues(infl[1]);

6Maple’s implicitize command did not always provide an answer.
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Figure 4: Showing that all the curves have the same topology

Different issues may appear. First the meanings of < ..., ... > in the two packages PolynomialIdeals
and VectorCalculus are different, therefore we suggest to introduce the 2nd one only after the first one
has been used. Second, the answer for general parameters a and b may be heavy; it may be wiser to
use them with specific values. Finally, this provides values of the parameter t which can correspond
to points of inflexion, but not only. More verifications are needed.

Remark 6 The given ellipse is the image of the circle whose equation is x2 + y2 = a2 by the affine
transformation (x, y) 7−→

(
x, b

a
y
)
. It is easily proven that the quartic obtained here is the image by

the same transformation of the Külp quartic found in the previous subsection.

3 Hyperbolism of a circle with respect to a line secant to the circle

3.1 The circle is centered at the origin
Other quartics can be obtained as hyperbolisms of circles. We consider a circle C centered at the
origin with radius r and the line D with equation x = b, where b ̸= r. Figure 5 is a screenshot of
a GeoGebra applet7); the line D is a secant to the circle C. We perform the same construction as
in subsection 2.1, and obtain a plot of the geometric locus, but cannot obtain an implicit equation
with the command LocusEquation. Therefore, we need to make the algebraic computation using
the CAS. Note that, even when changing the value of r by changing the length of the corresponding
segment AB, the implicit equation is not obtained.

f := -rˆ2 + xˆ2 + yˆ2;

7https://www.geogebra.org/m/pwrx2uzf; a related applet is available at https://www.geogebra.
org/m/x22etuhc.
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Figure 5: The line is not tangent to the circle

li := y = r*sin(t) + sin(t)*(x - r*cos(t))/cos(t);
yP := subs(x = d, rhs(li));
xM := r*cos(t);
yM := yP;
p1 := x - xM;
p2 := y - yM;
p1 := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1), p1);
p2 := subs(cos(t) = (-uˆ2 + 1)/(uˆ2 + 1), subs(sin(t) = 2*u/(uˆ2 + 1), p2));
p1 := simplify(p1*denom(p1));
p2 := simplify(p2*denom(p2));
J := <p1, p2>;
JE := EliminationIdeal(J, {d, r, x, y});

The output provides an implicit equation for the hyperbolism. After simplification, it reads as follows:

x2y2 + d2x2 − d2r2 = 0 (7)

As expected, for d = r, we have Equation (4). Figure 6 shows hyperbolisms of the same circle for 4
different lines whose respective equations are x = 1/2, x = 1, x = 2 and x = 3, from the innermost
to the outermost curve.

Their differences are emphasized in Figure 7, in an orthogonal but not orthonormal system of
coordinates (therefore, the circle does not ”look like” a circle) . These are screenshots of an animation
programmed with Maple, with the animate command, as follows:

ac := animate(plot, [[r*cos(t), subs(d = A, yP), t = 0 .. 2*Pi]],
A = 0.5 .. 4, frames = 50, color = red, thickness = 3)

Here too, as in subsection 2.2, the animation provides a visualization of the fact that for different
values of the parameters, the obtained curve has the same topology.
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Figure 6: The line is not tangent to the circle - several plots

Figure 7: 4 screenshots of the Maple animation

3.2 The circle passes through the origin
We consider now a circle C passing through the origin and centered on the x−axis. The circle C has
equation

(
x− a

2

)2
+ y2 =

(
a
2

)2. We take a line D : x = b, where b < a and the point O is the origin.
The construction is displayed in Figure 8. The segments on the left are used instead of sliders.

A plot of the geometric locus of the point M (the Tracer) when M0 (the Mover) runs over the circle
is obtained by the Locus command. Not as in the previous section, the command LocusEquation
does not provide an answer. Therefore, algebraic computations have to be performed using the CAS.

First, we derive a parametric presentation for the circle C, using the intersection of the circle and
of a line through the origin with slope t (pay attention that this will be the generic line OM0){

x = a
t2+1

y = at
t2+1

(8)

For the point P : if xP = b, then yP = tb and M has coordinates{
x = a

t2+1

y = tb
. (9)

We define polynomials

P1(x, y) = x(t2 + 1)− a and P2(x, y) = −b ∗ t+ y. (10)
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Figure 8: The line is a secant of the circle

Let J =< P1, P2 >. By elimination of the parameter t, we obtain the following implicit equation of
degree 3:

xy2 + b2x− ab2 = 0. (11)

Note that for b = a, i.e. the line is tangent to the circle at the end point of a diameter passing by the
origin, the curve is a Witch of Agnesi.

4 Piriform quartics

4.1 Hyperbolism of a piriform quartic curve
We refer to [19] for the implicit and parametric presentation of the curve. A piriform curve is a quartic
P whose equation is

b2y2 = x3(a− x), (12)

where a and b are positive parameters. In Figure 9 (a screenshot of a GeoGebra applet8), these
parameters are determined by 2 segments, in order to have a purely geometric construction. This
figure correspond to the case (a, b) = (3, 2). A plot is obtained and, simultaneously, an implicit
equation, which reads as follows:

x(9x2 − 54x+ 4y2) = 0 (13)

The factor x determines the y−axis, emphasized in the Figure. This component is irrelevant to the
geometric question; it appears because issues related to Zariski topology. Such issues are discussed
in [11], and are beyond the scope of the present article. The 2nd factor determines an ellipse, whose
equation can be written as follows:

(x− 3)2

9
+

y2

81
4

= 1 (14)

8https://www.geogebra.org/m/smcehrzy
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Figure 9: Hyperbolism of a piriform curve

enabling to find the geometric characteristic elements of the ellipse. This is the desired hyperbolism
of the piriform curve.

In order to perform the algebraic computations, it is worth to begin with a parametric presentation
of the curve P . We may use a trigonometric parametrization9:{

x = a
2
(1 + cos t)

y = a2

8b
(sin 2t+ 2 sin t)

(15)

but we have to transform it into a rational parametrization. We choose a different way. Any line
but the y−axis through the origin intersects again the curve P . Let L be the line whose equation is
y = tx, t ∈ R. We use the following Maple code:

pear := bˆ2*yˆ2 - xˆ3*(a - x);
l := -t*x + y;
solve({l = 0, pear = 0}, {x, y});
par := allvalues(%[2]);

The output gives two components, given by:

(x, y) =

(
a

2
+

√
−4b2t2 + a2

2
, t

(
a

2
+

√
−4b2t2 + a2

2

))
(16)

and

(x, y) =

(
a

2
−

√
−4b2t2 + a2

2
, t

(
a

2
−

√
−4b2t2 + a2

2

))
(17)

We work now with the first component, the 2nd one can be treated exactly in the same way.

9It is given at https://mathcurve.com/courbes2d.gb/piriforme/piriforme.shtml.
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Denote xP = a, yP = ta. By construction, we have:{
xM = a

2
+ 1

2

√
−4b2t2 + a2

yM = ta
(18)

Now we use the following Maple code:

p1 := x - a/2 =sqrt(-4*bˆ2*tˆ2 + aˆ2)/2;
p1 := p1ˆ2;
p1 := lhs(p1) - rhs(p1);
p2 := -a*t + y;
J:=<p1,p2>;
JE := EliminationIdeal(J, {a, b, x, y})
G := Generators(JE)[1];

whose output is the polynomial

G(x, y) = a2x2 − a3x+ b2y2 (19)

We have

G(x, y) = a2(x2 − ax) + b2y2 = a2
(
x− a

2

)2
+ b2y2 − a4

4
. (20)

Rewriting the equation under the form (
x− a

2

)2
b2

+
y2

a2
=

a2

4b2
, (21)

which is equivalent to (
x− a

2

)2(
a
2

)2 +
y2

(2b)2
= 1, (22)

we identify that the requested curve is an ellipse.

Remark 7 The obtained hyperbolism has been identified as an ellipse by algebraic means. This
appears also in the GeoGebra applet, but a slight modification may induce a big change, and the
implicit equation may not be obtained. An experimental way to check that the curve is an ellipse
consists in marking 5 arbitrary points on the curve (with the Point on Object command) and determine
a conic by 5 points on it (there is a button driven command for this). This is a numerical checking, not
a symbolic proof, but may enable students to proceed further. Of course, the algebraic computations
that we performed with the CAS are a must.

4.2 A piriform curve as antihyperbolism of a circle
The choice of the original curve in previous subsection incites to have a look at piriform curves from
another point of view; see [20, 19].

Definition 8 With the notations of Definition 1, the inverse transformation (x, y) →
(
x, xy

a

)
is called

antihyperbolism.
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Screenshots of a GeoGebra applet10 are displayed in Figure 10. Exploration using the sliders show
that for |b| > a, the piriform curve lies inside the circle and is tangent to it at A. For −a < b < a,
the curve is part inside and part outside of the circle, and is still tangent to the circle at A, but from
outside.

Figure 10: A piriform quartic constructed from a circle - exploration with the sliders

5 Hyperbolism of a nephroid
Let C be a circle whose center is at the origin. The envelope of the family of circles centered on C and
tangent to the y− axis is a sextic called a nephroid [16]. By that way the curve has been constructed
in Figure 11, which is a screenshot of a GeoGebra applet11. We denote the nephroid by N . Later, this
figure will enable to compare the hyperbolism of N with a hyperbolism of a circle, as described in
Subsection 2.1.

Figure 11: Comparison between hyperbolisms of a nephroid and of a circle

A general implicit equation for a nephroid is

4(x2 + y2 − a2)3 = 27a4x2, (23)

10https://www.geogebra.org/m/yfq7wmqz
11https://www.geogebra.org/m/pyhk9qvr
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where a is a positive parameter. The curve N can also be described by a parametric presentation:{
x = 2a sin3 t

y = a(1 + sin2 t) cos t
(24)

To construct a hyperbolism of N with respect to the origin and to a vertical line, we follow the same
path as in previous sections. This begins with deriving from Equation (24) a rational parametrization.
Applying the substitution in Equation (3), we obtain:{

x0 =
−u6−9u4+9u2+1

(u2+1)3

y0 =
16au3

(u2+1)3

(25)

The coordinates of P are thus {
xP = b

yP = (−u6−9u4+9u2+1)b
16au3

and the coordinates of M are {
xM = 16au3

u2+1)3

yM = (−u6−9u4+9u2+1)b
16au3

(26)

We run now the following Maple code, similar to what we did already:

p1 := x*denom(xM) - numer(xM);
p2 := y*denom(yM) - numer(yM);
J := <p1, p2>;
JE := EliminationIdeal(J, {a, b, x, y});
G := Generators(JE)[1];
evala(AFactor(G));

The last command is intended to check that the obtained polynomial G(x, y) is irreducible. We have
here a polynomial of degree 12, which fits Remark 3:

G(x, y) = 4a6x6y6 − 12a6b2x4y4 + 12a4b2x6y4 + 12a6b4x2y2 − 24a4b4x4y2

+12a2b4x6y2 − 4a6b6 − 15a4b6x2 − 12a2b6x4 + 4b6x6.
(27)

Figure 12 shows the curve N for a = 1 and hyperbolisms with respect to the origin and the line whose
equation is x = b for b = 1/2, 2, 3.

6 A construction of a lemniscate
The construction proposed in this section is slightly different from a hyperbolism. Studying at least
one case may be an appeal to explore more cases.

We consider a circle C whose center is the origin and radius r and a line D whose equation is
x = b. Take a point M0 on the circle C; the point P is the intersection of D with the horizontal line
through M0. Then we define M to be the point of intersection of the line (OP ) with the vertical line
through M0. The geometric locus of M when M0 runs on C is a lemniscate. This is illustrated in

64

The Electronic Journal of Mathematics and Technology, Volume 19, Number 1, ISSN 1933-2823



Figure 12: Three hyperbolisms of the same nephroid with respect to the origin

Figure 13: The circle is centered at the origin and the line intersects it.

Figure 13. The figure shows screenshots of a GeoGebra applet12; using the sliders may help to study
the family of curves.

For b < r, the lemniscate lies part out of the circle. For b > r, the lemniscate is bounded by the
circle. In both cases, the lemniscate is tangent to the circle at its vertices, i.e. its points on the x−axis
different form the origin.

GeoGebra could not give an implicit equation for the lemniscate, we will look for such an equation
via algebraic computations. We choose the same parametrization as above for the circle, i.e. the
coordinates of M0 are given by:

(x0, y0) =

(
a · 1− u2

1 + u2
, a · 2u

1 + u2

)
. (28)

Then the coordinates of P are

(xP , yP ) =

(
b, a · 2u

1 + u2

)
.

The equation of the line (OP ) is y = 2au
b(1+u2)

· x, whence the coordinates of M :

(xM , yM) =

(
a · 1− u2

1 + u2
,
2a2u(1− u2)

b(1 + u2)2

)
. (29)

12https://www.geogebra.org/m/zkgmxume
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We apply the following code:

p1 := x*denom(xM) - numer(xM);
p2 := y*denom(yM) - numer(yM);
J := <p1, p2>;
JE := EliminationIdeal(J, {a, b, x, y});
G := Generators(JE)[1];

and obtain the polynomial
G(x, y) = a2x4 − a4x2 + a2b2y2. (30)

The vanishing set of G(x, y) in the real plane is called a lemniscate of Gerono.

7 Special features of the curves which have been obtained
In Section 2, the obtained hyperbolisms show common features:

1. The curve has two disjoint components. On the one hand, these components cannot be dis-
tinguished by algebraic means as the defining polynomial is irreducible over the field of real
numbers. This can be proven using Maple command evala(AFactor(...); the need for that com-
mand, and not the ordinary Factor command, has been analyzed in [13].

2. The geometric basis of the construction induces easily that the two components are symmetric
about the y−axis.

3. From the exploration, the y−axis seems to be an asymptote to both. Actually, this is a conse-
quence of the construction: when the point M0 gets arbitrarily close to the y−axis, the slope of
the line (OM0), and thus the y−coordinate of M , tend to infinity.

Actually the origin does not belong to the hyperbolism of the original curve. It can be obtained
only if M0 is at the origin, but in this case the line (OM0) is not defined.

8 Discussion
In this paper, we considered a question in plane geometry, which can look rather simple. Its translation
using technology revealed a more complicated situation that foreseen. The 2 first examples may be
treated by hand, with students having learnt an elementary course in the spirit of [2], but quickly the
computations become heavier. The problem can be understood by a regular High-School student13,
but the algebraic machinery beneath is then out of reach, as it belongs to Computer Algebra, and
uses algorithms from Ring Theory. Moreover, we deal here with curves of higher degree than what
High-School students learn, as explained in section 1.

Along the paper, implicitization has been performed using polynomial rings and elimination.
Maple has an implicitize command, but we preferred to have our computations more understand-
able, and not to use this command as a blackbox. The user has no access to the algorithms, but via

13Decades ago, such constructions were performed in High-School by hand using paper, pencil and ruler. Only in easy
cases, an equation was derived.
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reading the paper in reference on the help page of the command. On the one hand, an educator has to
make a decision between low-level and high level commands (see [14]). On the other hand, what can
be done depends on the students’ theoretical background; sometimes it is necessary to use the CAS
in order to bypass a lack of knowledge (see [8]).

Moreover, respective affordances of the two kinds of software used here have been analyzed in the
past, and the importance of networking between them has been emphasized, expressing a wish to see
development of tools for an automatic dialog between the kinds of software [25, 26, 12]. See also [31]
for more recent developments with GeoGebra. Here the strengths of both kinds appeared sometimes
different from what we were accustomed. Anyway, it is only natural that for different questions, the
respective abilities and strengths of the different kinds of software which are used may vary.

Finally, the lemniscate of Gerono in Section 6 shows that classical constructions can be imitated
with slight modifications and lead to software’s broader experience. After all, curiosity is the main
engine for exploration and discovery. The 4 C’s of 21st Century Education [24] are well-known; they
are Collaboration, Communication, Critical Thinking and Creativity. Nevertheless, a 5th C has to be
added, namely Curiosity, without which the 2 last C’s cannot appear. As in [10], we illustrate this
here with the construction and the exploration of plane curves. Of course, this claim is true in much
larger domains.
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